3.2.12 \(\int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\) [112]

3.2.12.1 Optimal result
3.2.12.2 Mathematica [A] (verified)
3.2.12.3 Rubi [A] (verified)
3.2.12.4 Maple [B] (verified)
3.2.12.5 Fricas [C] (verification not implemented)
3.2.12.6 Sympy [F]
3.2.12.7 Maxima [F]
3.2.12.8 Giac [F]
3.2.12.9 Mupad [F(-1)]

3.2.12.1 Optimal result

Integrand size = 21, antiderivative size = 97 \[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=-\frac {6 \sqrt {b \cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 b d \sqrt {\cos (c+d x)}}+\frac {2 b^2 \sin (c+d x)}{5 d (b \cos (c+d x))^{5/2}}+\frac {6 \sin (c+d x)}{5 d \sqrt {b \cos (c+d x)}} \]

output
2/5*b^2*sin(d*x+c)/d/(b*cos(d*x+c))^(5/2)+6/5*sin(d*x+c)/d/(b*cos(d*x+c))^ 
(1/2)-6/5*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/ 
2*d*x+1/2*c),2^(1/2))*(b*cos(d*x+c))^(1/2)/b/d/cos(d*x+c)^(1/2)
 
3.2.12.2 Mathematica [A] (verified)

Time = 0.23 (sec) , antiderivative size = 65, normalized size of antiderivative = 0.67 \[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {-6 \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+6 \sin (c+d x)+2 \sec (c+d x) \tan (c+d x)}{5 d \sqrt {b \cos (c+d x)}} \]

input
Integrate[Sec[c + d*x]^3/Sqrt[b*Cos[c + d*x]],x]
 
output
(-6*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2] + 6*Sin[c + d*x] + 2*Sec[ 
c + d*x]*Tan[c + d*x])/(5*d*Sqrt[b*Cos[c + d*x]])
 
3.2.12.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 108, normalized size of antiderivative = 1.11, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 2030, 3116, 3042, 3116, 3042, 3121, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^3 \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle b^3 \int \frac {1}{\left (b \sin \left (\frac {1}{2} (2 c+\pi )+d x\right )\right )^{7/2}}dx\)

\(\Big \downarrow \) 3116

\(\displaystyle b^3 \left (\frac {3 \int \frac {1}{(b \cos (c+d x))^{3/2}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (\frac {3 \int \frac {1}{\left (b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3116

\(\displaystyle b^3 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \cos (c+d x)}dx}{b^2}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\int \sqrt {b \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3121

\(\displaystyle b^3 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\cos (c+d x)}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle b^3 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {\sqrt {b \cos (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{b^2 \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle b^3 \left (\frac {3 \left (\frac {2 \sin (c+d x)}{b d \sqrt {b \cos (c+d x)}}-\frac {2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {b \cos (c+d x)}}{b^2 d \sqrt {\cos (c+d x)}}\right )}{5 b^2}+\frac {2 \sin (c+d x)}{5 b d (b \cos (c+d x))^{5/2}}\right )\)

input
Int[Sec[c + d*x]^3/Sqrt[b*Cos[c + d*x]],x]
 
output
b^3*((2*Sin[c + d*x])/(5*b*d*(b*Cos[c + d*x])^(5/2)) + (3*((-2*Sqrt[b*Cos[ 
c + d*x]]*EllipticE[(c + d*x)/2, 2])/(b^2*d*Sqrt[Cos[c + d*x]]) + (2*Sin[c 
 + d*x])/(b*d*Sqrt[b*Cos[c + d*x]])))/(5*b^2))
 

3.2.12.3.1 Defintions of rubi rules used

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3116
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[(n + 2)/(b^2*(n + 1))   I 
nt[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && 
 IntegerQ[2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3121
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x]) 
^n/Sin[c + d*x]^n   Int[Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && Lt 
Q[-1, n, 1] && IntegerQ[2*n]
 
3.2.12.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(366\) vs. \(2(109)=218\).

Time = 2.42 (sec) , antiderivative size = 367, normalized size of antiderivative = 3.78

method result size
default \(-\frac {2 \sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (24 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-24 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+12 \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b +b \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}}{5 b \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \left (8 \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-12 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+6 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) b}\, d}\) \(367\)

input
int(sec(d*x+c)^3/(cos(d*x+c)*b)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/5*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*b*sin(1/2*d*x+1/2*c)^2)^(1/2)/b/sin(1/2 
*d*x+1/2*c)^3/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d* 
x+1/2*c)^2-1)*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2 
*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4*cos(1/2*d*x+1/2* 
c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellipt 
icE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^ 
2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^ 
2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4 
*b+b*sin(1/2*d*x+1/2*c)^2)^(1/2)/((2*cos(1/2*d*x+1/2*c)^2-1)*b)^(1/2)/d
 
3.2.12.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.25 \[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\frac {-3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} \sqrt {b} \cos \left (d x + c\right )^{3} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} {\left (3 \, \cos \left (d x + c\right )^{2} + 1\right )} \sin \left (d x + c\right )}{5 \, b d \cos \left (d x + c\right )^{3}} \]

input
integrate(sec(d*x+c)^3/(b*cos(d*x+c))^(1/2),x, algorithm="fricas")
 
output
1/5*(-3*I*sqrt(2)*sqrt(b)*cos(d*x + c)^3*weierstrassZeta(-4, 0, weierstras 
sPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*sqrt(b)*cos 
(d*x + c)^3*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) 
 - I*sin(d*x + c))) + 2*sqrt(b*cos(d*x + c))*(3*cos(d*x + c)^2 + 1)*sin(d* 
x + c))/(b*d*cos(d*x + c)^3)
 
3.2.12.6 Sympy [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {\sec ^{3}{\left (c + d x \right )}}{\sqrt {b \cos {\left (c + d x \right )}}}\, dx \]

input
integrate(sec(d*x+c)**3/(b*cos(d*x+c))**(1/2),x)
 
output
Integral(sec(c + d*x)**3/sqrt(b*cos(c + d*x)), x)
 
3.2.12.7 Maxima [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

input
integrate(sec(d*x+c)^3/(b*cos(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate(sec(d*x + c)^3/sqrt(b*cos(d*x + c)), x)
 
3.2.12.8 Giac [F]

\[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int { \frac {\sec \left (d x + c\right )^{3}}{\sqrt {b \cos \left (d x + c\right )}} \,d x } \]

input
integrate(sec(d*x+c)^3/(b*cos(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^3/sqrt(b*cos(d*x + c)), x)
 
3.2.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^3(c+d x)}{\sqrt {b \cos (c+d x)}} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^3\,\sqrt {b\,\cos \left (c+d\,x\right )}} \,d x \]

input
int(1/(cos(c + d*x)^3*(b*cos(c + d*x))^(1/2)),x)
 
output
int(1/(cos(c + d*x)^3*(b*cos(c + d*x))^(1/2)), x)